STATION No (X10) 161 (x10) STATION No (X1) (x1) B RATE IF CC-Link F D C 10Mbps B 5Mbps A 2.5Mbps 230.4kbps 9 625kbps 8 156kbps 7 5 4 10Mbps 3 5Mbps 2 2.5Mbps 115.2kbps 1 625kbps 0 156kbps B RATE 1(LEC-T1)IF 115.2kbps 2 15 - 4.2 (CN2SW) CC-Link (CN2SW)CC-Link (CN2SW) () PC/TB (CN2)(LEC-T1-)(LEC-W2)(LEC) (CN2SW)CC-Link (LEC) 16 - 4.3 (LEC) (LEC)(LEC-T1-) (LEC-W2)(LEC) (LEC)(LEC)(
Time [s] Method 2: Calculation T1 T2 T3 T4 T5 T6 Cycle time T can be found from the following equation. L : Stroke [mm] V : Speed [mm/s] a1: Acceleration [mm/s2] a2: Deceleration [mm/s2] T = T1 + T2 + T3 + T4 [s] Calculation example) T1 to T4 can be calculated as follows. T1 and T3 can be obtained by the following equation.
bar absolute, T1 = 297 5K, 0.07 bar P 0.14 bar.
[W] = 7.3 [kW] T = T2 T1 Cooling capacity = Considering a safety factor of 20%, 7.3 [kW] x 1.2 = 8.8 [kW] T1: Outlet temperature 118 Cooling Capacity Calculation HRS100/150 Series Required Cooling Capacity Calculation Example 3: When there is no heat generation, and when cooling the object below a certain temperature and period of time.
[W] = 7.3 [kW] T = T2 T1 Cooling capacity = Considering a safety factor of 20%, 7.3 [kW] x 1.2 = 8.8 [kW] T1: Outlet temperature 23 Cooing Capacity Calculation Series HRS100/150 Required Cooling Capacity Calculation Example 3: When there is no heat generation, and when cooling the object below a certain temperature and period of time.
type * Size 16 is not applicable to H4, H5.
Q = qm x C x (T2 T1) x qv x C x iT 60 1 x 70 x 4.186 x 103 x 4.0 60 = = qm x C x (T2 T1) 860 Q = = 19535 [J/s] 19535 [W] = 19.5 [kW] x qv x 60 x C x iT 860 = Cooling capacity = Considering a safety factor of 20%, 19.5 [kW] x 1.2 = 23.4 [kW] 1 x 70 x 60 x 1.0 x 103 x 4.0 860 = Thermo-chiller T1: Outlet temperature Q: Heat generation amount 1680 [cal/h] 860 Users equipment = T = T2 T1
)IF115.2kbps 2 4.2(CN2SW) TM (CN2SW) Deviceet TM(CN2SW) Deviceet () PC/TB(CN2)(LEC-T1-)(LEC-W2)(LEC) TM(LEC) (CN2SW)Deviceet 15 - 4.3(LEC) (LEC)(LEC-T1-) (LEC-W2)(LEC) (LEC)(LEC)(LEC-T1-) 4.3.1 ID 2(LEC)ID (LEC)IDID112 ID (LEC-W2) Normal Parameter Controller ID () Download (IDID ) 4.3.2 IF(LEC)(LEC-T1) IF115.2kbps (LEC-W2) Normal HELP-Password 16 - Para protectComm speed -1 Para protect
Q = qm x C x (T2 T1) x qv x C x iT 60 1 x 70 x 4.186 x 103 x 4.0 60 = = qm x C x (T2 T1) 860 Q = = 19535 [J/s] 19535 [W] = 19.5 [kW] x qv x 60 x C x iT 860 = Cooling capacity = Considering a safety factor of 20%, 19.5 [kW] x 1.2 = 23.4 [kW] 1 x 70 x 60 x 1.0 x 103 x 4.0 860 = Thermo-chiller T1: Outlet temperature Q: Heat generation amount 1680 [cal/h] 860 Users equipment = T = T2 T1
Power supply 11) 100/110V AC (50/60Hz) 200/220V AC (50/60Hz) 21) 1) Consult SMC if the supply voltage for LC1-1HV1 will be 110V AC or more, or the supply voltage for LC1-1HV2 will be 220V AC or more. or LC1-1-T1(Teaching box) are required.
Bore size (mm) 32, 40 50, 63 T2 T1 M F E D B Part No.
T1 Approx. Max. T1 Approx. Max. T2 Approx. Max. T2 Approx. T3 Cylinder with by-pass piping component parts No. 1 2 3 4 Quantity 1 1 1 1 Description Part No.
Q = qm x C x (T2 T1) x qv x C x iT 60 1 x 35 x 4.186 x 103 x 3.0 60 = = qm x C x (T2 T1) 860 Q = = 7325 [J/s] 7325 [W] = 7.3 [kW] x qv x 60 x C x iT 860 = Cooling capacity = Considering a safety factor of 20%, 7.3 [kW] x 1.2 = 8.8 [kW] 1 x 35 x 60 x 1.0 x 103 x 3.0 860 = Q: Heat generation amount T1: Outlet temperature Thermo-chiller Users equipment T = T2 T1 7325 [W] = 7.3 [kW] Cooling
16 20 20 10 10 12 12 12 14 14 14 14 14 14 14 17 17 17 22 22 26 26 10 10 12 12 12 14 14 17 17 17 17 17 19 19 19 24 24 27 27 27 27.7 30.1 30.8 31.5 33.8 34.6 35.6 36.3 37.1 29.5 27.7 40.4 41.3 31.2 40.1 38.4 45.6 43.9 15 15 16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 KN-04-100 KN-04-150 KN-06-100 KN-06-150 KN-06-200 KN-08-150 KN-08-200 KN-10-250 KN-10-300 KN-10-350 KN-10-400 KN-10
Q = qm x C x (T2 T1) x qv x C x iT 60 1 x 35 x 4.186 x 103 x 3.0 60 = = qm x C x (T2 T1) 860 Q = = 7325 [J/s] 7325 [W] = 7.3 [kW] x qv x 60 x C x iT 860 = Cooling capacity = Considering a safety factor of 20%, 7.3 [kW] x 1.2 = 8.8 [kW] 1 x 35 x 60 x 1.0 x 103 x 3.0 860 = Q: Heat generation T1: Outlet Thermo-chiller temperature amount Customer equipment T = T2 T1 7325 [W] = 7.3 [kW]
1400 [W] T = T2 T1 Cooling capacity = Considering a safety factor of 20%, 1400 [W] x 1.2 = 1680 [W] T1: Outlet temperature 207 HRSE Series Required Cooling Capacity Calculation Example 3: When there is no heat generation, and when cooling the object below a certain temperature and period of time.
Q = qm x C x (T2 T1) x qv x C x iT 60 1 x 35 x 4.186 x 103 x 3.0 60 = = qm x C x (T2 T1) 860 Q = = 7325 [J/s] 7325 [W] = 7.3 [kW] x qv x 60 x C x iT 860 = Cooling capacity = Considering a safety factor of 20%, 7.3 [kW] x 1.2 = 8.8 [kW] 1 x 35 x 60 x 1.0 x 103 x 3.0 860 = Q: Heat generation amount T1: Outlet temperature Thermo-chiller Users equipment 7325 [W] = 7.3 [kW] T = T2 T1 Cooling
of read outputs: 16 bits (10h) 12 1 (Number of bits) 13 0 Calculated 14 value Checksum(LRC) 15 Calculated value 16 End code CR 17 LF Note 1: The maximum value is 456 bits.
JOG and constant rate movement, return to origin, test operation and testing of compulsory output can be performed. 27 Series LEC Teaching Box/LEC-T1 How to Order LEC T1 3 J G Enable switch (Option) Teaching box Enable switch S None Equipped with enable switch Nil Cable length 3 3 m Interlock switch for jog test function Stop switch Initial language J E Japanese English Stop switch G Equipped
Please refer to page 16-4-5 for figure.