YU-03 J E T1 B 2-D through 2-O counter bore (mm) Bore size (mm) B D E J M O Part no. Joints 12 7 25 9 34 11.5, depth 7.5 YB-03 32, 40 K ( across flats) 12 9 32 11 42 14.5, depth 8.5 YB-05 50, 63 H (with locking) 16 11 38 13 52 18, depth 12 YB-08 80 d2 d1 19 14 50 17 62 21, depth 14 YB-10 100 L UT Weight (g) Bore size (mm) C UA RS W T1 T2 V Part no.
YU-03 J E T1 B 2-D through 2-O counter bore (mm) Bore size (mm) B D E J M O Part no. Joints 12 7 25 9 34 11.5, depth 7.5 YB-03 32, 40 K ( across flats) 12 9 32 11 42 14.5, depth 8.5 YB-05 50, 63 H (with locking) 16 11 38 13 52 18, depth 12 YB-08 80 d2 d1 19 14 50 17 62 21, depth 14 YB-10 100 L UT Weight (g) Bore size (mm) C UA RS W T1 T2 V Part no.
[W] = 7.3 [kW] T = T2 T1 Cooling capacity = Considering a safety factor of 20%, 7.3 [kW] x 1.2 = 8.8 [kW] T1: Outlet temperature 23 Cooing Capacity Calculation Series HRS100/150 Required Cooling Capacity Calculation Example 3: When there is no heat generation, and when cooling the object below a certain temperature and period of time.
(P.79) USB LAN 8 - 2.4 () 1 (LECPMJ-) 1 1 *1 1 *1 (LE-CP---) 1 *2 (LEC-CMJ-) 1 *1 *2 [] (: LEC-T1-3G) (LEC-W2) (USB ) 2 3.4 (P.15) 3 4.1 (STAION NO.B RATE)(P.17) 4PLC PLC 4.3 PLC (P.18) 5 (CN1CN5) 5. (P.19) 9 - 6 DC24V LED LED PWR ALM LED 8. LED (P.28) LECLEDALM CC-Link CN4 I/O 16.
RUN 15 Starting PRO-NO BIT 1 17 17 Pro-no. bit1 The terminal that designates the program to be executed. Can designate 8 types of programs with a total of 3 bits. (Set by the binary system.)
0.093 9 Compact Cylinder with Air Cushion Double Acting: Single Rod Series RQ Simple Joint/32 to 50 A type mounting bracket 2-D T2 M W V U T1 Joint and mounting bracket (A type, B type) part numbers F B E YA 03 Applicable air cylinder bore size mm 03 05 32, 40 50 Bore size (mm) B D E F M T1 T2 Part no.
5 LECPA 5.4.1(1) 5.4.1(2) 5.4.2(1) 5.4.2(2) 6 17 - 5.1 1, TB Ver.
Time [s] Method 2: Calculation T1 T2 T3 T4 T5 T6 Cycle time T can be found from the following equation. L : Stroke [mm] V : Speed [mm/s] a1: Acceleration [mm/s2] a2: Deceleration [mm/s2] T = T1 + T2 + T3 + T4 [s] Calculation example) T1 to T4 can be calculated as follows. T1 and T3 can be obtained by the following equation.
RUN 15 Starting PRO-NO BIT 1 17 17 Pro-no. bit1 The terminal that designates the program to be executed. Can designate 8 types of programs with a total of 3 bits. (Set by the binary system.)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 60
)IF115.2kbps 2 4.2(CN2SW) TM (CN2SW) Deviceet TM(CN2SW) Deviceet () PC/TB(CN2)(LEC-T1-)(LEC-W2)(LEC) TM(LEC) (CN2SW)Deviceet 15 - 4.3(LEC) (LEC)(LEC-T1-) (LEC-W2)(LEC) (LEC)(LEC)(LEC-T1-) 4.3.1 ID 2(LEC)ID (LEC)IDID112 ID (LEC-W2) Normal Parameter Controller ID () Download (IDID ) 4.3.2 IF(LEC)(LEC-T1) IF115.2kbps (LEC-W2) Normal HELP-Password 16 - Para protectComm speed -1 Para protect
Manifold VCS20/30/40 17-2-42 Single unit N.C. 17-2-46 VV2CS2/3/4 2 port N.C. Manifold Direct operated 17-2-52 VCW20/30/40 N.C./N.O. Single unit VV2CW2/3/4 17-2-57 N.C./N.O. Manifold 17-2-64 VDW10/20/30 Single unit N.C. 17-2-68 VV2DW1/2/3 N.C. Manifold Solenoid valve 17-3-17 VX21/22/23 N.C./N.O. Single unit VVX21/22/23 17-3-25 N.C./N.O.
SV1000 3 position 73 (.16) (B) 2 (A) 4 4 position dual 3 port 71 (.15) Single solenoid 74 (.163) SOL.b SOL.a 3 (EB) 5 (EA) Double solenoid 78 (.17) SV2000 1 (P) 3 position 83 (.18) 4 position dual 3 port 78 (.17) 4 position dual 3 port valve: N.C./N.O.
L1 L2 A (2) L3 H (1) T2 T1 D1 D2 Model AS1200-M3 M3 x 0.5 M3 x 0.5 4.5 6.6 23.5 21.5 8 5 5 20.5 18.5 AS120-M5 M5 x 0.8 M5 x 0.8 8 10 28.3 10.3 9 9 25 22.2 25.5 AS120-U10/32 10-32UNF 10-32UNF AS220-01 30.5 13.2 14.3 14.6 32.4 27.4 12 (12.7) 35.5 18 1/8 1/8 AS220-02 35.3 17.5 18 19.5 34.8 29.8 17 (17.5) 27.2 40.3 1/4 1/4 AS320-03 40.8 19.7 22.5 24.3 40.6 35.6 19 30 45.8 3/8 3/8 AS420-04 42.4
RUN (15) Starting PRO-NO BIT 1 17 Control input (17) The terminal which designates the program to be executed. Can designate 8 types of programs with a total of 3 bits.
Q = qm x C x (T2 T1) x qv x C x iT 60 1 x 35 x 4.186 x 103 x 3.0 60 = = qm x C x (T2 T1) 860 Q = = 7325 [J/s] 7325 [W] = 7.3 [kW] x qv x 60 x C x iT 860 = Cooling capacity = Considering a safety factor of 20%, 7.3 [kW] x 1.2 = 8.8 [kW] 1 x 35 x 60 x 1.0 x 103 x 3.0 860 = Q: Heat generation amount T1: Outlet temperature Thermo-chiller Users equipment T = T2 T1 7325 [W] = 7.3 [kW] Cooling
Calculation example) T1 to T4 can be calculated as follows. L Speed: V [mm/s] a1 a2 T1 = V/a1 = 300/3000 = 0.1 [s], T3 = V/a2 = 300/3000 = 0.1 [s] Time [s] T = T1 + T2 + T3 + T4 [s] L 0.5 V (T1 + T3) V T1: Acceleration time and T3: Deceleration time can be obtained by the following equation.
(P.23) 17./P.70 USB LAN 8 - 2.4 () 1 JXC-CPW JXCD1 1 JXC-CPW 1 DeviceNet JXC-CD-S T JXC-CD-T *1 1 DeviceNet *2 JXC-CD-S JXC-CD-T 1 *1 *2 [] (LEC-T1-3G) (LEC-W2) (USB ) P5062-5 2 3.4 (P.16) 3 4.1 Node Address/ Data Rate (P.18) 4PLC PLC 5 5.(P. 23) 9 - 6 DC24V LED LED PWR ALM LED 8.LED (P.31) JXCLEDALM DeviceNet SI I/O 16.
T1 (Terminal block of 1 row): 1-4 stations T2 (Terminal block of 2 rows): 5-8 stations T1 and T2 can be optionally chosen by adopting the combinations of single and double wiring(option spec.)etc.