SMC Corporation of America
Elite Part Number Search
Search Results "ZA1051-Q15L-FB-M1"

FA G A + Stroke [mm] Bore size Standard stroke A C D FA FB G GA GB H J JC K L MM ML NN 12 (10 x 2) 10, 20, 30, 50, 100 33 24.5 6 6.5 2 17 11 5.5 58 8.5 1.5 8.5 11 M3 x 0.5 7.5 M2.5 x 0.45 16 (12 x 2) 33 24.5 6 6.5 2 18 11 5.5 64 9 3 9 11 M4 x 0.7 10 M3 x 0.5 Bore size OA OB OL P PD PE PW Q R S T U VA WA X YY YL Z 12 (10 x 2) 3.4 6.5 2.5 M3 x 0.5 6 16 18.5 8 26 14 49.5 39 52 10.2 23 M4 x

FA G A + Stroke [mm] Bore size Standard stroke A C D FA FB G GA GB H J JC K L MM ML NN 12 (10 x 2) 10, 20, 30, 50, 100 33 24.5 6 6.5 2 17 11 5.5 58 8.5 1.5 8.5 11 M3 x 0.5 7.5 M2.5 x 0.45 16 (12 x 2) 33 24.5 6 6.5 2 18 11 5.5 64 9 3 9 11 M4 x 0.7 10 M3 x 0.5 Bore size OA OB OL P PD PE PW Q R S T U VA WA X YY YL Z 12 (10 x 2) 3.4 6.5 2.5 M3 x 0.5 6 16 18.5 8 26 14 49.5 39 52 10.2 23 M4 x

RHC FB MK(2) RS Q G With scraper With adjuster RS H A Hexagon width across flats RB RZQ RA Stroke adjuster MI W S SA CEP1 Hexagon width across flats RC CE1 RD SB SC RE CE2 Arrangement range RF mm Note) Observe the specified adjustment range when adjusting with a stroke adjuster.

, Piston rod (Rubber cushion only) Bore Stroke C With rod boot Wh NCA K KK DC e -X KA 20AM 9 9 Rod cross section f I Data h (mm) BE AM 20 24 C 12 14 D 37.5 46.5 FA 30 35 FB 14 16 K 10 12 KA KK KV 38 50 KW 7 8 TDH9 TW 34.5 42.5 WH 38 45 Eh8 EE G 9 12 H 58 69 HR N 17(19) 22(25) NB 34.5 42.5 S 68 89 XB 47 57 XC ZZ 140 174 SW 17 19 TC M8 x 1 Bore 30 0 0.033 +0.036 0 10 32 40 97 122 M30 x 1.5

type only) Nickel plating Cushion ring gasket 6-10-8 9 Series C76 Cylinder: Standard/Non-rotating Type Double Acting, Single/Double Rod Dimensions [First angle projection] Double acting, Single rod Rubber cushion: C76E Without magnet, Built-in magnet Bore Stroke XC + Stroke G XB BE WH G EE EE HR BE 8 SW K D 45 CJ1 2-Eh8 NB C CJP KK TDH9 4-TC 1.5 KW 1.5 CJ2 TW N AM N FA KV CM2 S + Stroke FB

Tightening torque (Nm) VQZ1000-FB-M VQZ1000-FB-R VQZ2000-FB VQZ3000-FB Metal seal 0.2 to 0.26 VQZ1000 Rubber seal Note) Other 0.25 to 0.35 0.25 to 0.35 VQZ2000 VQZ3000 Note) For the special voltages, please consult with SMC.

Component Part Component Parts No. 1 Description Bracket Steel strip Material No. 1 2 3 Description Bracket Cross recessed round head screw Clasp Material Steel strip Steel wire Steel strip 617 AS Series Dimensions L7 L8 Lock nut L6 L5 Applicable tubing O.D. d D2 through D3 D4 L4 D1 L3 L2 M1 M1 L1 Metric Size MAX.

M1 Applicable tubing O.D.: 3.2, 4, 6 1/8", 5/32" 2 x Applicable tubing O.D. d Front view Right side view Metric Size Model Applicable tubing O.D. d D1 Release button D2 D3 D4 D5 L1 L2 L3 L41 L5 L6 L7 L8 M1 W1 W2 X1 X2 Weight [g] X(X) Y Max.

Calculate (1) (Wmax) from the graph of max. payload (W1, W2, W3) and calculate (2) and (3) (Mmax) from the maximum allowable moment graph (M1, M2, M3).

Description Description Material Bracket Cross recessed round head screw Clasp 1 2 3 1 Steel strip Steel wire Steel strip 2 Series AS Dimensions L7 L8 Lock nut L6 L5 Applicable tube O.D. d D2 through D3 D4 L4 D1 L3 L2 M1 M1 L1 Metric Size MAX.

M1 Applicable tubing O.D.: 3.2, 4, 6 1/8", 5/32" Metric Size Model Applicable tubing O.D.d D1 Release button D2 D3 D4 D5 L1 L2 L3 L41 L5 L6 L7 L8 M1 Weight [g] X(X) Y Max.

Operating Conditions Model : ML2B32 Load : 15N Speed , Va : 0.25m/s Pressure : 0.5MPa L1 : 0.05m L2 : 0.05m W W L1 L1 Loading Static Loading Dynamic Loading A Load due to W W3 B Momentum due to W M2 C Momentum due to we when stopping M3 V D M1 V 2.

A part z1 m1 = 20 x 3 x 4 x 2.7 x 10-6 = 6.48 x 10-4 (kg) Weight calculation m1 = a x b x c x Relative density IZ1 Inertial moment around Z1 axis IZ1 = {m1 (a2 + b2) / 12} x 10-6 = {6.48 x 10-4 x (202 + 32)/12} x 10-6 = 2.21 x 10-8 (kg.m2) = 2.21 x 10-8 + 6.48 x 10-4 x 16.42 x 10-6 = 0.20 x 10-6 (kg.m2) IA Inertial moment around Z axis IA =IZ1 + m1r12 x 10-6 z f2 z2 B part r2 = 23.5(mm)

Calculate the moment of inertia of attachment. z r1 Material of attachment: Aluminum alloy (Specific gravity = 2.7) A part z1 r1 = 37 (mm) Calculation of weight m1 = a x b x c x Specific gravity m1 = 40 x 7 x 8 x 2.7 x 10-6 = 0.006 (kg) Moment of inertia around Z1 axis IZ1 = {m1(a2 + b2)/12} x 10-6 Iz1 = {0.006 x (402 + 72)/12} x 10-6 = 0.8 x 10-6 (kgm2) IA = 0.8 x 10-6 + 0.006 x 372 x 10

Calculate the moment of inertia of attachment. z r1 Material of attachment: Aluminum alloy (Specific gravity = 37 (mm) r2 = 2.7) A part z1 m1 = 40 x 7 x 8 x 2.7 x 10-6 = 0.006 (kg) Calculation of weight m1 = a x b x c x Specific gravity Moment of inertia around Z1 axis IZ1 = {m1(a2 + b2)/12} X 10-6 Iz1 = {0.006 x (402 + 72)/12} x 10-6 = 0.8 x 10-6 (kgm2) IA = 0.8 x 10-6 + 0.006 x 372 x 10

Calculate (1) (Wmax) from the graph of max. payload (W1, W2, W3) and calculate (2) and (3) (Mmax) from the maximum allowable moment graph (M1, M2, M3).

Model M1 M2 M3 W1 W2 W3 W4 ML1C25 14.7 4.90 4.90 20 12 3 10 ML1C32 29.4 9.80 9.80 32 19 5 16 ML1C40 58.8 19.6 19.6 50 30 8 25 Caution on Design ML1C/M1 Allowable moment and Load Mass Maximum Allowable moment and Maximum load mass varies depending on mounting orientation, piston speed, etc.

Load at end of lever + m a + K 3 a1 I = m1 12 4a2 + b I = m1 + m2 12 4a1 + b (Example) When shape of m is a 5 2r sphere refer to 7 and K = m 5. Thin rectangular plate (rectangular parallelopiped) Position of rotational axis: Through the center of gravity and perpendicular to the plate (also the same in case of a thicker plate) 10.