SMC Corporation of America
Elite Part Number Search
Search Results "ZA1051-K1Y5L-FP1A-M2"

3 I = m a2 12 I = m2 2r 2 5 4.1-21

Referring to case u where "W2" is a sphere, 4a +b 2 2 2 4a +b 2 1 2 1=m1 +m2 12 12 2 r K=m2 5 2 tThin rectangle board (Parallelogram) !0Gear transmission Position of rotation axis: Passes through center of gravity and perpendicular to the board. (Same formula regardless of board thickness.) 1. Find moment of inertia1B around the rod (B). 2.

Mounting thread is also reinforced from size M1.7 to M2.

Find the inertial moment B for the rotation of shaft (B). 3 + m2 a22 + K (Example) When shape of m2 is a sphere, refer to 7, and K = m2 2r2 2.

: 6 or more Tightening torque: 0.1 to 0.14 Nm 3 4 4 1.7 1.7 11.6 0.8 2.45 1.5 2.3 (Lead wire AWG#26) 300 54 3.4 10 5 3 3 1.7 10 Base hole dimension w Mounting screw (Included) M2 x 11 2 x M2 x 0.4 Thread depth: 6 or more Tightening torque: 0.1 to 0.14 Nm 3 4 4 (11.6) 4 4 2.1 1.7 1.7 3 2.45 Universal 0.8 4.9 10 2 (OUT) 1.5 2.3 1 (SUP) 3 (EXH) 3 3 1.7 3 (EXH) port 1 (SUP) port 2 (OUT) port

This is a legacy product. Please contact us for the latest version.sales@ocaire.com, VACUUM EJECTOR, COMPACT, VACUUM SERIES, ZA COMPACT VACUUM EJECTOR, BG, ZA NOZZLE SIZE 0.5, .00000 lb

Vacuum ejector series ZA is compact and lightweight, making it ideal for pick and place operations, and suitable to all industries.  Due to the compact design of the ZA, it is possible to install on moving parts.  The shortened tube length to pad improves response time.  The ZA is available as a single unit or manifold type, with or without pressure sensors and suction filters.  Compact

M1 M2 Body (B) N Body (A) 2-R A port S N A port B port 2-R Y Y A1 M1 A2 SMC SMC J 27 H X For single vane: Above illustrations show actuators for 180 when B port is pressurized.

M1 M2 Body (B) N Body (A) 2-R A port J E2 H E1 F S N A port B port 2-R CRB1 Y Y A1 M1 A2 P 6-Q X A1 (mm) R (RC) E2 (h9) F (h9) E1 (g6) V B W C Model A1 D G M2 X U A2 Y H N P J Z M1 S Q K T L CRB1BW 50CRB1BW 50-E CRB1BW 63CRB1BW 63-E CRB1BW 80CRB1BW 80-E CRB1BW 100CRB1BW 100-E 26 21 29 27 30 29 35.5 38 18 22 30 32 14 18 15 25 20 30 24 38 M6 x 1 depth 9 12 0.006 0.017 11.9 0 0.043 25 0

Load at end of lever Position of rotational axis: Perpendicular to the plate through one end 2 1 2 2 a + K = m1 + m2 3 a Ex.) When shape of W2 is a sphere, refer to u, and 4a + b 2 1 2 4a + b 2 2 2 = m1 + m2 12 12 It becomes K = m2 2r2 5 5. Thin rectangular plate (Rectangular parallelepiped) 10.

M1 M2 Body (B) N Body (A) 2-R A port S N A port B port 2-R Y Y A1 M1 A2 SMC SMC J 27 H X For single vane: Above illustrations show actuators for 180 when B port is pressurized.

M1 M2 Body (B) N Body (A) 2-R A port S N A port B port 2-R Y Y A1 M1 A2 SMC SMC J 27 H X For single vane: Above illustrations show actuators for 180 when B port is pressurized.

Allowable M1 (= M3) moment (Nm) Load weight (kg) Cylinder stroke (mm) 32 Allowable Moment (M2) (Nm) 10 16 20 25 Bore size (mm) CXWM 0.108 0.549 0.809 1.029 2.695 Cylinder speed (mm/s) CXWL 0.108 0.549 0.809 1.201 2.695 Note) M2 is steady regardless of the strokes. 8-26-6 5 Series CX Before Operation 1. Changing from the non-auto switch specifications to the auto switch specifications 2.

Calculate (1) (Wmax) from the graph of max. payload (W1, W2, W3) and calculate (2) and (3) (Mmax) from the maximum allowable moment graph (M1, M2, M3).

+ 0.43 m2 0.37 m2 0.19 m2 965 mm 970 mm 500 mm 445 mm 377 mm 377 mm Globally compatible power supplies 50 Hz 60 Hz 50/60 Hz Power consumption reduced by 17% Energy saving 3-phase 200 VAC 3-phase 200 to 230 VAC 3-phase 380 to 415 VAC 3-phase 460 to 480 VAC Single-phase 200 to 230 VAC HRLE Series : HRLE090 : HRLE050 CAT.ES40-75A A Circulating Fluid Temperature Controller Thermo-chiller Compact

IZN10 IZN10 IZN10 IZN10 01 01 01 01 P P P P 06 06 06 06 Z Z Z Z B1 B1 B1 B1 IZN10 AC 01 02 11 Rc1/8 NPN P PNP 06 6 07 6.351/4) 16 6 ( 17 6.351/4() (3m) Z (10m) N IZN10-NT L DIN IZN10A002 IZN10B1 L B2 B3 DIN 01 06 ES 2 01 ES 17mm 2 2 02 3 3 11 Rc1/8 4 4 /IZS30 /IZS30 /IZS30 /IZS30-M2 M2 M2 M2 06 6: 07 6.351/4: 16 6 :( 17 6.35(1/4):() IZN10-CP(3m) IZN10-CPZ(10m) IZN10A003 NPN

= d x e x f x Specific gravity m2 = 5 x 10 x 12 x 2.7 x 10-6 = 0.002 (kg) Moment of inertia around Z2 axis IZ2 = {m2 (d2 + e2)/12} x 10-6 IZ2 = {0.002 x (52 + 102)/12} x 10-6 = 0.02 x 10-6 (kgm2) IB = 0.02 x 10-6 + 0.002 x 472 x 10-6 = 4.4 x 10-6 (kgm2) I = 9.0 x 10-6 + 4.4 x 10-6 = 13.4 x 10-6= 0.13 x 10-4 (kgm2) Moment of inertia around Z axis IB = IZ2 + m2r22 x 10-6 Total moment of

= d x e x f x Specific gravity m2 = 5 x 10 x 12 x 2.7 x 10-6 = 0.002 (kg) Moment of inertia around Z2 axis IZ2 = {m2 (d2 + e2)/12} x 10-6 IZ2 = {0.002 x (52 + 102)/12} x 10-6 = 0.02 x 10-6 (kgm2) IB = 0.02 x 10-6 + 0.002 x 472 x 10-6 = 4.4 x 10-6 (kgm2) I = 9.0 x 10-6 + 4.4 x 10-6 = 13.4 x 10-6= 0.13 x 10-4 (kgm2) Moment of inertia around Z axis IB = IZ2 + m2r22 x 10-6 Total moment of

Calculate (1) (Wmax) from the graph of max. payload (W1, W2, W3) and calculate (2) and (3) (Mmax) from the maximum allowable moment graph (M1, M2, M3).

Moment (Nm) Moment (Nm) Moment (Nm) Load mass (kg) M1 = F1 x L1 Piston speed V (mm/s) ML1C/M2, M3 M2 = F2 x L2 M3 = F3 x L3 Piston speed V (mm/s) (How to calculate the load ratio) A. Consider (1) max. load mass, (2) static moment, (3) dynamic moment (when stopper collides) when calculating the max. allowable moment and load mass.