Vacuum ejector series ZA is compact and lightweight, making it ideal for pick and place operations, and suitable to all industries. Due to the compact design of the ZA, it is possible to install on moving parts. The shortened tube length to pad improves response time. The ZA is available as a single unit or manifold type, with or without pressure sensors and suction filters. Compact
Vacuum ejector series ZA is compact and lightweight, making it ideal for pick and place operations, and suitable to all industries. Due to the compact design of the ZA, it is possible to install on moving parts. The shortened tube length to pad improves response time. The ZA is available as a single unit or manifold type, with or without pressure sensors and suction filters. Compact
1.25 3/4 11/64 1.5 1.5 1/2 7/8 3/8-24 3.75 0 1/2 5/8 1.57 1.18 2.75 1 3/8 2.34 2.72 4.25 7 3/8 6 7/8 7 5/8 400 (4) 1 3/4-16 1 1/8 4.7 1/2 4 1/2 2 1/4 1 1/4 3/4 15/64 1.5 1.5 1/2 7/8 3/8-24 4.5 0 1/2 5/8 1.57 1.18 3.5 1 3/8 2.34 2.72 4.25 7 3/8 6 7/8 7 5/8 8 Medium Duty Air Cylinder Series NCA1 Front Flange Type NC A1F (MF1 Mounting Style) (in) Bore (in) MM KK A AA B BA C D DD E EA EE F FB
FA G A + Stroke [mm] Bore size Standard stroke A C D FA FB G GA GB H J JC K L MM ML NN 12 (10 x 2) 10, 20, 30, 50, 100 33 24.5 6 6.5 2 17 11 5.5 58 8.5 1.5 8.5 11 M3 x 0.5 7.5 M2.5 x 0.45 16 (12 x 2) 33 24.5 6 6.5 2 18 11 5.5 64 9 3 9 11 M4 x 0.7 10 M3 x 0.5 Bore size OA OB OL P PD PE PW Q R S T U VA WA X YY YL Z 12 (10 x 2) 3.4 6.5 2.5 M3 x 0.5 6 16 18.5 8 26 14 49.5 39 52 10.2 23 M4 x
FA G A + Stroke [mm] Bore size Standard stroke A C D FA FB G GA GB H J JC K L MM ML NN 12 (10 x 2) 10, 20, 30, 50, 100 33 24.5 6 6.5 2 17 11 5.5 58 8.5 1.5 8.5 11 M3 x 0.5 7.5 M2.5 x 0.45 16 (12 x 2) 33 24.5 6 6.5 2 18 11 5.5 64 9 3 9 11 M4 x 0.7 10 M3 x 0.5 Bore size OA OB OL P PD PE PW Q R S T U VA WA X YY YL Z 12 (10 x 2) 3.4 6.5 2.5 M3 x 0.5 6 16 18.5 8 26 14 49.5 39 52 10.2 23 M4 x
, Piston rod (Rubber cushion only) Bore Stroke C With rod boot Wh NCA K KK DC e -X KA 20AM 9 9 Rod cross section f I Data h (mm) BE AM 20 24 C 12 14 D 37.5 46.5 FA 30 35 FB 14 16 K 10 12 KA KK KV 38 50 KW 7 8 TDH9 TW 34.5 42.5 WH 38 45 Eh8 EE G 9 12 H 58 69 HR N 17(19) 22(25) NB 34.5 42.5 S 68 89 XB 47 57 XC ZZ 140 174 SW 17 19 TC M8 x 1 Bore 30 0 0.033 +0.036 0 10 32 40 97 122 M30 x 1.5
type only) Nickel plating Cushion ring gasket 6-10-8 9 Series C76 Cylinder: Standard/Non-rotating Type Double Acting, Single/Double Rod Dimensions [First angle projection] Double acting, Single rod Rubber cushion: C76E Without magnet, Built-in magnet Bore Stroke XC + Stroke G XB BE WH G EE EE HR BE 8 SW K D 45 CJ1 2-Eh8 NB C CJP KK TDH9 4-TC 1.5 KW 1.5 CJ2 TW N AM N FA KV CM2 S + Stroke FB
Tightening torque (Nm) VQZ1000-FB-M VQZ1000-FB-R VQZ2000-FB VQZ3000-FB Metal seal 0.2 to 0.26 VQZ1000 Rubber seal Note) Other 0.25 to 0.35 0.25 to 0.35 VQZ2000 VQZ3000 Note) For the special voltages, please consult with SMC.
M1 M2 Body (B) N Body (A) 2-R A port S N A port B port 2-R Y Y A1 M1 A2 SMC SMC J 27 H X For single vane: Above illustrations show actuators for 180 when B port is pressurized.
M1 M2 Body (B) N Body (A) 2-R A port J E2 H E1 F S N A port B port 2-R CRB1 Y Y A1 M1 A2 P 6-Q X A1 (mm) R (RC) E2 (h9) F (h9) E1 (g6) V B W C Model A1 D G M2 X U A2 Y H N P J Z M1 S Q K T L CRB1BW 50CRB1BW 50-E CRB1BW 63CRB1BW 63-E CRB1BW 80CRB1BW 80-E CRB1BW 100CRB1BW 100-E 26 21 29 27 30 29 35.5 38 18 22 30 32 14 18 15 25 20 30 24 38 M6 x 1 depth 9 12 0.006 0.017 11.9 0 0.043 25 0
Load at end of lever Position of rotational axis: Perpendicular to the plate through one end 2 1 2 2 a + K = m1 + m2 3 a Ex.) When shape of W2 is a sphere, refer to u, and 4a + b 2 1 2 4a + b 2 2 2 = m1 + m2 12 12 It becomes K = m2 2r2 5 5. Thin rectangular plate (Rectangular parallelepiped) 10.
M1 M2 Body (B) N Body (A) 2-R A port S N A port B port 2-R Y Y A1 M1 A2 SMC SMC J 27 H X For single vane: Above illustrations show actuators for 180 when B port is pressurized.
M1 M2 Body (B) N Body (A) 2-R A port S N A port B port 2-R Y Y A1 M1 A2 SMC SMC J 27 H X For single vane: Above illustrations show actuators for 180 when B port is pressurized.
Calculate (1) (Wmax) from the graph of max. payload (W1, W2, W3) and calculate (2) and (3) (Mmax) from the maximum allowable moment graph (M1, M2, M3).
+ 0.43 m2 0.37 m2 0.19 m2 965 mm 970 mm 500 mm 445 mm 377 mm 377 mm Globally compatible power supplies 50 Hz 60 Hz 50/60 Hz Power consumption reduced by 17% Energy saving 3-phase 200 VAC 3-phase 200 to 230 VAC 3-phase 380 to 415 VAC 3-phase 460 to 480 VAC Single-phase 200 to 230 VAC HRLE Series : HRLE090 : HRLE050 CAT.ES40-75A A Circulating Fluid Temperature Controller Thermo-chiller Compact
IZN10 IZN10 IZN10 IZN10 01 01 01 01 P P P P 06 06 06 06 Z Z Z Z B1 B1 B1 B1 IZN10 AC 01 02 11 Rc1/8 NPN P PNP 06 6 07 6.351/4) 16 6 ( 17 6.351/4() (3m) Z (10m) N IZN10-NT L DIN IZN10A002 IZN10B1 L B2 B3 DIN 01 06 ES 2 01 ES 17mm 2 2 02 3 3 11 Rc1/8 4 4 /IZS30 /IZS30 /IZS30 /IZS30-M2 M2 M2 M2 06 6: 07 6.351/4: 16 6 :( 17 6.35(1/4):() IZN10-CP(3m) IZN10-CPZ(10m) IZN10A003 NPN
= d x e x f x Specific gravity m2 = 5 x 10 x 12 x 2.7 x 10-6 = 0.002 (kg) Moment of inertia around Z2 axis IZ2 = {m2 (d2 + e2)/12} x 10-6 IZ2 = {0.002 x (52 + 102)/12} x 10-6 = 0.02 x 10-6 (kgm2) IB = 0.02 x 10-6 + 0.002 x 472 x 10-6 = 4.4 x 10-6 (kgm2) I = 9.0 x 10-6 + 4.4 x 10-6 = 13.4 x 10-6= 0.13 x 10-4 (kgm2) Moment of inertia around Z axis IB = IZ2 + m2r22 x 10-6 Total moment of
= d x e x f x Specific gravity m2 = 5 x 10 x 12 x 2.7 x 10-6 = 0.002 (kg) Moment of inertia around Z2 axis IZ2 = {m2 (d2 + e2)/12} x 10-6 IZ2 = {0.002 x (52 + 102)/12} x 10-6 = 0.02 x 10-6 (kgm2) IB = 0.02 x 10-6 + 0.002 x 472 x 10-6 = 4.4 x 10-6 (kgm2) I = 9.0 x 10-6 + 4.4 x 10-6 = 13.4 x 10-6= 0.13 x 10-4 (kgm2) Moment of inertia around Z axis IB = IZ2 + m2r22 x 10-6 Total moment of
Calculate (1) (Wmax) from the graph of max. payload (W1, W2, W3) and calculate (2) and (3) (Mmax) from the maximum allowable moment graph (M1, M2, M3).
Moment (Nm) Moment (Nm) Moment (Nm) Load mass (kg) M1 = F1 x L1 Piston speed V (mm/s) ML1C/M2, M3 M2 = F2 x L2 M3 = F3 x L3 Piston speed V (mm/s) (How to calculate the load ratio) A. Consider (1) max. load mass, (2) static moment, (3) dynamic moment (when stopper collides) when calculating the max. allowable moment and load mass.