Calculate the moment of inertia of attachment. z r1 Material of attachment: Aluminum alloy (Specific gravity = 37 (mm) r2 = 2.7) A part z1 m1 = 40 x 7 x 8 x 2.7 x 10-6 = 0.006 (kg) Calculation of weight m1 = a x b x c x Specific gravity Moment of inertia around Z1 axis IZ1 = {m1(a2 + b2)/12} X 10-6 Iz1 = {0.006 x (402 + 72)/12} x 10-6 = 0.8 x 10-6 (kgm2) IA = 0.8 x 10-6 + 0.006 x 372 x 10
A part z1 m1 = 40 X 7 X 8 X 2.7 X 10-6 Calculation of weight m1 = a X b X c X Specific gravity = 0.006(kg) Iz1 = {0.006 X (40 2+7 2)/12} X 10-6 Moment of inertia around Z1 axis = 0.8 X 10-6 (kgm 2) = 0.8 X 10-6+ 0.006 X 37 2 X 10-6 Iz1 = {m1(a 2+ b 2)/12} X 10-6 IA = 9.0 X 10-6(kgm 2) Moment of inertia around Z axis IA = IZ1 + m1r1 2 X 10-6 z r2 Z2 B part r2 = 47(mm) m2 = 5 X 10 X 12 X
(mm) Model H Bracket mounting dimensions Q Weight (g) 1(P) R 2(A) 2(A) R 3(R)* L1 L2 L3 L4 L5 L6 M1 M2 Bracket assembly no.
U N I O N Y KQU (KQ2U) Applicable Model D1 D2 L1 L2 P Q M1 M2 Effective Orifice Tube OD mm (mm2) a b Nylon/Urethane 3.2 4 KQU23-04 9.6 10.4 33.5 17.5 9.6 9 15.5 16 3.2/2.7 4 6 KQU04-06 10.4 12.8 35 18 10.4 9.7 16 17 4.2/4.2 6 8 KQU06-08 12.8 15.2 39.5 20 12.8 11.7 17 18.5 13.4/13.4 8 10 KQU08-10 15.2 18.5 45 24.5 15.2 13.7 18.5 21 25.6/17.7 10 12 KQU10-12 18.5 20.9 49 27.5 18.5 16.1 21 22
Load at end of lever + m a + K 3 a1 I = m1 12 4a2 + b I = m1 + m2 12 4a1 + b (Example) When shape of m is a 5 2r sphere refer to 7 and K = m 5. Thin rectangular plate (rectangular parallelopiped) Position of rotational axis: Through the center of gravity and perpendicular to the plate (also the same in case of a thicker plate) 10.
(mm) I Weight (g) Nylon Urethane M1 D1 D2 L1 Q L2 P M2 Part No. 9.7 11.7 8 6 35.5 40.5 6 4 KGUD06-08 KGUD04-06 10.4 18.2 16 12.8 20.3 17 12.8 15.2 10.4 12.8 21 26 17 18.5 4.2 13.4 4.2 13.4 11 19 Plug-in reducer: KGR Effective orifice(mm 2) Applicable tube O.D. (mm) Applicable fitting size d Part No.
A part z1 m1 = 20 x 3 x 4 x 2.7 x 10-6 = 6.48 x 10-4 (kg) Weight calculation m1 = a x b x c x Relative density IZ1 Inertial moment around Z1 axis IZ1 = {m1 (a2 + b2) / 12} x 10-6 = {6.48 x 10-4 x (202 + 32)/12} x 10-6 = 2.21 x 10-8 (kg.m2) = 2.21 x 10-8 + 6.48 x 10-4 x 16.42 x 10-6 = 0.20 x 10-6 (kg.m2) IA Inertial moment around Z axis IA =IZ1 + m1r12 x 10-6 z f2 z2 B part r2 = 23.5(mm)
(mm) I Weight (g) Nylon Urethane M1 D1 D2 L1 Q L2 P M2 Part No. 9.7 11.7 8 6 35.5 40.5 6 4 KGUD06-08 KGUD04-06 10.4 18.2 16 12.8 20.3 17 12.8 15.2 10.4 12.8 21 26 17 18.5 4.2 13.4 4.2 13.4 11 19 Plug-in reducer: KGR Effective orifice(mm 2) Applicable tube O.D. (mm) Applicable fitting size d Part No.
.: 4, 6, 8, 1/4" 28 28 [mm] Model A C P PF2M701/702/705/710L -C4(-L) 84.4 7.6 2.8 depth 8.4 8 8 PF2M701/702/705/710/ 725/750L-C6(-L) 84.4 8 2.8 depth 8.4 2 x P 2 x P PF2M725/750L-N7(-L) 84.4 11.8 2.8 depth 8.4 PF2M711/721L-C8(-L) 88 12 2.8 depth 6.2 PF2M711/721L-N7(-L) 88 10.3 2.8 depth 6.2 19 2-Color Display Digital Flow Switch PF2M7(-L) Series Dimensions PF2M7m-m1/2(-L) 48 A Width across
L B O W T Y P E Model Port thread Tube O.D (mm) Effective area 4 6 8 10 12 In-Out Out-Exh ASV120F-M3 M3x0.5 0.3 0.3 ASV220F-M5 M5x0.8 1.3 1.3 ASV310F-01 PT1/8 7 8 ASV310F-02 PT1/4 7 8 ASV410F-01 PT1/8 13.5 14 ASV410F-02 PT1/4 13.5 14 ASV410F-03 PT3/8 13.5 14 ASV510F-02 PT1/4 23 27 ASV510F-03 PT3/8 27 29 ASV510F-04 PT1/2 27 29 Model Applicable T H D1 D2 L1 L2 L3 L4 *A M1
H L1 L2 L3 L4 L5 L6 M1 M2 Q Model C D J E F G K 1(P)2(A) 2(A)3(R) 18 1(P) 2(A) 4 4 47.6 23.8 23.8 16.5 15.8 15.8 11 3.4 1.2 15 VHK-B1A 44.5 14.5 1 27 22 16.5 26 41 3.5 VHKl-04F-04F VHKl-06F-04F 18 6 4 6 41 48 48.6 24.3 23.7 16.5 3.5 16.8 15.8 11 5.1 1.2 15 16 VHK-B1A 44.5 14.5 1 27 22 16.5 26 VHKl-06F-06F 24.3 16.8 7.2 VHKl-08F-06F 18 8 6 8 41 50.5 52.4 26.2 24.3 16.5 3.5 18.7 16.8 11 9 1.2
However, note that only the AS221FPQ uses steel. 713 AS-FPQ/FPG Series Dimensions H (Hexagon width across flats) Applicable tubing O.D. d A L4 D1 L3 D2 M1 L1 L2 T M5 type Applicable tubing O.D. d H (Hexagon width across flats) A L4 D1 L3 D2 M1 L1 T L2 Model Weight (g) (3) Tubing O.D. d T H D1 D2 L1 L2 L3 (4) M1 L4 (1) (4) Max. Min. Max. 1 2 Min.
However, note that only the AS221FPQ uses steel. 713 AS-FPQ/FPG Series Dimensions H (Hexagon width across flats) Applicable tubing O.D. d A L4 D1 L3 D2 M1 L1 L2 T M5 type Applicable tubing O.D. d H (Hexagon width across flats) A L4 D1 L3 D2 M1 L1 T L2 Model Weight (g) (3) Tubing O.D. d T H D1 D2 L1 L2 L3 (4) M1 L4 (1) (4) Max. Min. Max. 1 2 Min.
Load at end of lever Position of rotational axis: Perpendicular to the plate through one end 2 1 2 2 a + K = m1 + m2 3 a Ex.) When shape of W2 is a sphere, refer to u, and 4a + b 2 1 2 4a + b 2 2 2 = m1 + m2 12 12 It becomes K = m2 2r2 5 5. Thin rectangular plate (Rectangular parallelepiped) 10.
+m2 3 a12 3 a22 12 4a12 + b2 = m1 CRBU2 12 4a22 + b2 + m2 CRB1 7.
Vertical mounting: 0 (None) Data NO Confirmation of sum of load ratio to the guide unit n 1 The moment load rate must be calculated in accordance with the above formula for all types, M1 to M3. As for Wmax and Mn, refer to the maximum load mass and allowable moment table in the next section.
Nm N M1 M M3 W W2 W W4 ML2B25 10.0 1.2 3.0 200.0 58.0 65.0 100.0 ML2B32 20.0 2.4 6.0 300.0 80.0 96.0 150.0 ML2B40 40.0 4.8 12.0 500.0 106.0 140.0 250.0 ML2B25 ML2B32 ML2B40 J 0.43 0.68 1.21 18 ML2B/M1 ML2B/W1 ML2B/W1 0 0 0 Nm 0 0 0 N N 0 m/s m/s m/s ML2B/M2 ML2B/W2 ML2B/W2 N m N N m/s ML2B/M3 m/s m/s 20 ML2B/W3 ML2B/W3 10 Nm 5 3 2 1 N N m/s m/s m/s ML2B/W4 500 N 00 N
105 130 150 190 212 236 30 35 35 40 40 50 50 56 59 67 73 77 85 69 78 84 92 100 44 52 64 78 92 115 128 144 16 20 20 25 30 36 36 40 42 50 59 76 92 100 112 118 27 32 32 37 37 47 47 53 40 50 55 65 80 90 90 90 60 70 86 102 116 145 161 182 32 40 40 52 52 59 59 59 43 43 43 9.0 9.0 11.5 13.5 13.5 19 19 19 112.5 121 133 141.5 150 167 Bore (mm) W/o rod boot W/ rod boot KA N H1 K MM GA FV J W M S M1
(Mounting position: Horizontal) W 1000 500 400 Allowable lateral load W (N) 300 Allowable kinetic energy 200 Piston speed 200 180 200 100 180 Piston speed Allowable kinetic energy 20 to 400mm/s 12.4J 50 40 30 (m1 + m2) V Kinetic energy E (J) = 2 m1: Weight of moving cylinder parts kg m2: Load weight kg V: Piston speed m/s 20 10 0 20 40 60 80 100 120 140 160 180 200 220 260 240 280 300 Kinetic
Cylinder (including thin round plate) Position of rotational axis: Through the plate's central axis Position of rotational axis: Perpendicular to the shaft anywhere along its length I = m1 x + m2 x 3 a1 3 a2 I = m x 2 r 2. Thin shaft Position of rotational axis: Through the shaft's center of gravity 7.