SMC Corporation of America
Elite Part Number Search
Search Results "ZA1051-N15L-P1-M2"

= d x e x f x Specific gravity m2 = 5 x 10 x 12 x 2.7 x 10-6 = 0.002 (kg) Moment of inertia around Z2 axis IZ2 = {m2 (d2 + e2)/12} x 10-6 IZ2 = {0.002 x (52 + 102)/12} x 10-6 = 0.02 x 10-6 (kgm2) IB = 0.02 x 10-6 + 0.002 x 472 x 10-6 = 4.4 x 10-6 (kgm2) I = 9.0 x 10-6 + 4.4 x 10-6 = 13.4 x 10-6= 0.13 x 10-4 (kgm2) Moment of inertia around Z axis IB = IZ2 + m2r22 x 10-6 Total moment of

= d x e x f x Specific gravity m2 = 5 x 10 x 12 x 2.7 x 10-6 = 0.002 (kg) Moment of inertia around Z2 axis IZ2 = {m2 (d2 + e2)/12} x 10-6 IZ2 = {0.002 x (52 + 102)/12} x 10-6 = 0.02 x 10-6 (kgm2) IB = 0.02 x 10-6 + 0.002 x 472 x 10-6 = 4.4 x 10-6 (kgm2) I = 9.0 x 10-6 + 4.4 x 10-6 = 13.4 x 10-6= 0.13 x 10-4 (kgm2) Moment of inertia around Z axis IB = IZ2 + m2r22 x 10-6 Total moment of

Calculate (1) (Wmax) from the graph of max. payload (W1, W2, W3) and calculate (2) and (3) (Mmax) from the maximum allowable moment graph (M1, M2, M3).

Moment (Nm) Moment (Nm) Moment (Nm) Load mass (kg) M1 = F1 x L1 Piston speed V (mm/s) ML1C/M2, M3 M2 = F2 x L2 M3 = F3 x L3 Piston speed V (mm/s) (How to calculate the load ratio) A. Consider (1) max. load mass, (2) static moment, (3) dynamic moment (when stopper collides) when calculating the max. allowable moment and load mass.

= d x e x f x Specific gravity m2 = 5 x 10 x 12 x 2.7 x 10-6 = 0.002 (kg) Moment of inertia around Z2 axis IZ2 = {m2 (d2 + e2)/12} x 10-6 IZ2 = {0.002 x (52 + 102)/12} x 10-6 = 0.02 x 10-6 (kgm2) IB = 0.02 x 10-6 + 0.002 x 472 x 10-6 = 4.4 x 10-6 (kgm2) I = 9.0 x 10-6 + 4.4 x 10-6 = 13.4 x 10-6= 0.13 x 10-4 (kgm2) Moment of inertia around Z axis IB = IZ2 + m2r22 x 10-6 Total moment of

2.7 X 10-6 Calculation of weight m2 = d X e X f X Specific gravity = 0.002(kg) Iz2 = {0.002 X (52 + 102)/12} X 10-6 Moment of inertia around Z2 axis = 0.02 X 10-6 (kgm 2) IB = 0.02 X 10-6 + 0.002 X 472 X 10-6 Iz2 = {m2(d 2 + e2)/12} x 10-6 Moment of inertia around Z axis IB = IZ2 + m2r22 x 10-6 = 4.4 X 10-6 (kgm2) I = 9.0 X 10-6 + 4.4 X 10-6 Total moment of inertia I = IA + IB = 13.4 X

U N I O N Y KQU (KQ2U) Applicable Model D1 D2 L1 L2 P Q M1 M2 Effective Orifice Tube OD mm (mm2) a b Nylon/Urethane 3.2 4 KQU23-04 9.6 10.4 33.5 17.5 9.6 9 15.5 16 3.2/2.7 4 6 KQU04-06 10.4 12.8 35 18 10.4 9.7 16 17 4.2/4.2 6 8 KQU06-08 12.8 15.2 39.5 20 12.8 11.7 17 18.5 13.4/13.4 8 10 KQU08-10 15.2 18.5 45 24.5 15.2 13.7 18.5 21 25.6/17.7 10 12 KQU10-12 18.5 20.9 49 27.5 18.5 16.1 21 22

(mm) I Weight (g) Nylon Urethane M1 D1 D2 L1 Q L2 P M2 Part No. 9.7 11.7 8 6 35.5 40.5 6 4 KGUD06-08 KGUD04-06 10.4 18.2 16 12.8 20.3 17 12.8 15.2 10.4 12.8 21 26 17 18.5 4.2 13.4 4.2 13.4 11 19 Plug-in reducer: KGR Effective orifice(mm 2) Applicable tube O.D. (mm) Applicable fitting size d Part No.

acceleration (mm/s) Mounting position Direction of load movement Model LJ1H10 LJ1H20 LJ1H30 Horizontal/Lateral Horizontal/Lateral Vertical Lateral Horizontal a M1 2000 a=1000 a=1000 2000 2000 a=1000 L1 mm L1 mm L1 mm Pitching W a=2000 a=2000 a=3000 a=3000 a=2000 1000 1000 1000 L1 a=3000 0 2 4 6 8 10 0 10 20 30 0 20 40 60 Work load (W) kg Work load (W) kg Work load (W) kg 600 600 600 L2 M2

(mm) I Weight (g) Nylon Urethane M1 D1 D2 L1 Q L2 P M2 Part No. 9.7 11.7 8 6 35.5 40.5 6 4 KGUD06-08 KGUD04-06 10.4 18.2 16 12.8 20.3 17 12.8 15.2 10.4 12.8 21 26 17 18.5 4.2 13.4 4.2 13.4 11 19 Plug-in reducer: KGR Effective orifice(mm 2) Applicable tube O.D. (mm) Applicable fitting size d Part No.

PA PAX PB Flow Characteristics Water Air Orifice size (mm ) Port size Av x 10-6 m2 12 (INN.C.) 13 (INN.O.) 12 (INN.C.) 13 (INN.O.) Model C [dm3/(sbar)] C [dm3/(sbar)] Av x 10-6 m2 Cv converted Cv converted b Cv b Cv N.O.

IN Model/Valve Specifications Max. operating pressure differential (MPa) Connection Weight (g) Av x 10-6 (m2) Cv converted C [dm 3/(sbar)] b Cv Water, Oil Air Flow characteristics Min. operating pressure differential (MPa) Orifice size (mm) Model Air Water Thread Oil AC DC AC DC AC DC 0.7 0.7 1.0 0.7 1.0 1.0 Max. system pressure (MPa) 1 4 1.9 2.4 4.5 2.4 5.5 9.5 VXD2130-

Nil Without restrictor With restrictor S Digital flow switch ON/OFF valve Nil Without digital flow switch NPN open collector 1 output + Analog output (1 to 5 V) PNP open collector 1 output + Analog output (1 to 5 V) NPN open collector 2 outputs PNP open collector 2 outputs NPN open collector 1 output + Analog output (4 to 20 mA) PNP open collector 1 output + Analog output (4 to 20 mA) P1

Flow characteristics: C Max. operating frequency To CYL port SUP side pressure (P1) Note) Based on JIS B 8375-1981 (Supply pressure: 0.5 MPa) Dimensions Courtesy of Steven Engineering, Inc.-230 Ryan Way, South San Francisco, CA 94080-6370-Main Office: (650) 588-9200-Outside Local Area: (800) 258-9200-www.stevenengineering.com Single unit Manifold 21.5 (5) 18 29 10.5 2n-C4, C6 C4: One-touch

O F , < F , Q r '=r, @ r,> r, Pressure Raies (P1 =Primary Pressure) (P2=Secondary Pressure) NVEP3l2O-2 NVEP314O-'r -04 Primary Pressure P1 = 45 PSIG (3 KSI/cmr) E t2 I { t r S F g t o o E 28 (r. a ( 1 ) E a E a NVEHtl4O-1 E t ^ *t 6 S (0.15) (0.s) t . 5 ( 0 1 ) F 5 (0.05) NVEE NVEP CONSTRUCTION DETAIL Flow Raie'lvpo: VEF212O (2 Pdts) NVEF:112O (3 Porb) Pressuro llrp: NVEP3I2O (3 Porb) l

How to Calculate Flow (At an air temperature 20C) 1P1+0.1013<1.89(P2+0.1013) Q=226S P(P2+0.1013) Piping 2P1+0.10131.89(P2+0.1013) 1Completely flush (air blow) pipes before plumbing to remove dust. 2Clamping torgue: Q=113S(P1+0.1013) Q:Flow rate under standard conditions [ /min (ANR)] P1:Upstream pressure (MPa) P2:Downstream pressure(MPa) P:Pressure differential(P1-P2)(MPa) S:Effective area

(P1 P2) : Upstream pressure (MPa) : Downstream pressure (MPa) : Effective area (mm) : Cv factor Q P P1 P2 S Cv 9

Normal primary pressure Drop of primary pressure Increase of primary pressure Pressure P1 P2 Time Switch output 1, 2 ON OFF The correction value is not stored on the EEPROM. When auto shift is used: When the primary pressure changes, set the auto shift function to Lo.

The pressure set by a compact regulator valve or an electro-pneumatic regulator is supplied to the P1 (external pilot) port of the VEX, which controls the large amount of pressure.
When the pressure is released to P1 (external pilot), the A (output) port side air is exhausted from the R (exhaust) port.

Fixed orifice and variable throttle are available as a throttle for adjusting the pressure increase. (1, 1.5, 2) Output Pressure (P2) vs Time Graph Output P2 P1 P2 reaches half of P1, and then the main valve of the soft start-up valve turns on.