Dimensions 2-M2 x 3 (Countersunk head Phillips screw for precision instruments) 2-M2 x 3 (Cross recessed head machine screw for precision instruments) 2-M3 x 8 (Bolt with hex. hole) 2-M2 x 5 (Bolt with hex. hole) MXP10/12/16 MXP6 Applicable size Switch rail part no.
MHCM2-7S D8.3 205.2 2-M2 x 0.4 thread (Mounting thread) 2-M2 x 0.4 depth 4 (Mounting thread) 2.5 2 1.5 When open 20 When closed 7 10 6 4.5 15 11 7.7 1.8 16.5 6 100.05 (23) M3 x 0.5 (Finger closing port) 2-M2 x 0.4 thread (Attachment mounting thread) 4 0 0.03 3 12-8-23
Static moment M2 = WL1 = 100.05 = 0.5 [Nm] 2 = M2/M2max = 0.5/16 = 0.031 W = 1 [kg] =10 [N] Investigate M2. Since M1 & M3 are not generated, investigation is unnecessary. Find the value of M2max when Va = 300mm/s from
MHCM2-7S D8.3 205.2 2-M2 x 0.4 thread (Mounting thread) 2-M2 x 0.4 depth 4 (Mounting thread) 2.5 2 1.5 When open 20 When closed 7 10 6 4.5 15 11 7.7 1.8 16.5 6 100.05 (23) M3 x 0.5 (Finger closing port) 2-M2 x 0.4 thread (Attachment mounting thread) 4 0 0.03 3 12-8-23
= d x e x f x Relative density m2 = 4 x 5 + 6 x 2.7 x 10-6 = 3.24 x 10-4 (kg) Inertial moment around Z2 axis IZ2 = {m2 (d2 x e2) / 12} x 10-6 IZ2 = {3.24 x 10-4 x (42 + 52) / 12} x 10-6 = 1.11 x 10-9 (kg.m2) = 1.11 x 10-9 + 3.24 x 10-4 x 23.52 x 10-6 = 0.18 x 10-6 (kg.m2) Inertial moment around Z axis IB = IZ2 x m2r22 x 10-6 IB Thus, the total inertial moment is I = IA x B I = 0.20 x 10
Dimensions Vacuum suction 2-M2 x 3 (Counter sunk Phillips screw for precision equipment) 2-M2 x 3 (Round head Phillips screw for precision equipment ) Relief port Cover installed in end cap section Vacuum suction Relief port 11-MXP 2-M3 x 8 (hexagon socket head screw) 2-M2 x 5 (hexagon socket head screw) MXP10, 12, 16 MXP6 Note Applicable size Switch rail model MXP 65 MXP-AD 65 MXP 6-10 MXP10
Static moment M2 = WL1 = 100.2 = 2 [Nm] 2 = M2/M2 max = 2/16 = 0.125 W = 1 [kg] = 10 [N] W Review M2. Since M1 & M3 are not generated, review is unnecessary. M L1 3. Dynamic moment We = 5 x 10-3WgU = 5 x 10-31.9.8500 = 25 [N ] Me3 = 1/3We(L2-A) = 1/3250.182 = 1.52 [Nm] 3 = Me3/Me3max = 1.52/6 = 0.25 Me3 Review Me3. (For Memax, find the value in
As a guide, when W + P0a>P0A, adjust P1 to make W + P1a = P0A. W: Load (N) P0: Operating pressure (MPa) P1, P2: Reduced pressure (MPa) a: Rod side piston area (mm2) A: Head side piston area (mm2) D-X 1241 Smooth Cylinder Specific Product Precautions 2 Be sure to read before handling.
L1 L2 L2 Main circuit power supply L3 L3 Regenerative converter N P1 P2 N DC reactor Connect between P1 and P2. (Connected at time of shipping.) P1 Control Circuit Power Supply Connector: CNP2 Accessory P2 Terminal name Function Function details P P C D L11 L21 Connect between P and D. (Connected at time of shipping.)
10-/21-AR20-B30-B: Max. 3.5 10-/21-AW40-B: Max. 5 AR50-B/60-B 10212 x P1 (Port size) A BB Pressure gauge (Option) C H K IN OUT B Q AA Applicable tubing 6/4 P2 (Pressure gauge port size) R F J M D J U Bracket (Option) T N S Optional specifications Standard specifications Model Round type pressure gauge Bracket mounting size Panel mount P1 P2 A B Note 1) C D Q R S T U V W Y Z F J K AA BB H
) 12(P1) 12(P1) 12(P1) 10(P2) 10(P2) 10(P2) 10(P2) 12(P1)10(P2) Air operated Solenoid Port VNC02 12 (P1) External pilot Bleed port External pilot 10 (P2) Bleed port External pilot Pilot exhaust Ass Ass Ass Ass y y y y VNH VNH VNH VNH () 3 3 3 3 (VNH (VNH (VNH (VNH ) ) ) ) VNH13 3 5MPa 7 VN-OMP0001 VNC VNC VNC VNC VNH VNH VNH VNH / / / / (VNC (VNC (VNC (VNC ) ) ) ) /30m /30m 0.49MPa
1 Q=226S P(P2+0.1013) Sonic flow : P1+0.1013 1.89(P2+0.1013) Do not use in an explosive environment. 2 Q=113S(P1+0.1013) Q : Flow rate [ /min(ANR)] S : Effective area (mm2) P : Differential pressure (P1-P2) [MPa] P1 : Upstream pressure [MPa] P2 : Downstream pressure [MPa] Do not use in locations subject to heavy vibration and/or shock.
Both of these become slower as the operating pressure is increased. 14 Technical Data 5 He leakage 8 Exhaust time (low/medium vacuum) The time (t) required to exhaust a chamber at low vacuum with volume V (l), from pressure P1 to P2, using a pump with pumping speed S (l/sec) is t=2.3(V/S)log(P1/P2).
How to Find the Flow Rate (at air temperature of 20C) Subsonic flow when P1 + 0.1013 < 1.89 (P2 + 0.1013) Q = 226S P(P2 + 0.1013) Sonic flow when P1 + 0.1013 1.89 (P2 + 0.1013) Q = 113S (P1 + 0.1013) Q: Air flow rate [l/min (ANR)] S: Effective area (mm) P: Differential pressure (P1P2) [MPa] P1: Upstream pressure [MPa] P2: Downstream pressure [MPa] Correction for different air temperatures
A B ZCUK AMJ Rc 1/8 Rc 1/8 AFJ AMV P1 P1 ZH -X185 P1 P2 P3 Base part no. Adsorption surface size SP1130 SP1230 SP1330 SP1430 SP1530 SP1630 50 x 50 55 40 10 Related Products 100 x 100 95 50 10 P2 P3 P2 P3 150 x 150 120 75 10 200 x 200 145 100 10 Rc 1/8 Rc 1/8 P3 P3 250 x 250 170 125 10 300 x 300 195 150 10 Square Rc 1/8 Rc 1/8 P1 P2 Base part no.
3 Driver type Nil Without cable S Standard cable R Robotic cable (Flexible cable) Nil Without cable 3 3 5 5 A 10 C 20 Compatible driver Power supply voltage [V] Nil Without driver M2 LECYM2-Vl 200 to 230 U2 LECYU2-Vl 200 to 230 25ALEC * When the driver type is selected, the cable is included. Select cable type and cable length. LEC S LEC SS-T !
Flat Type Fingers [3] 3.5 2 7.5 7.5 +1.2 0.8 +0.2 0 2 When closed 1 When open 5 3.5 Note) To mount attachments, use M2 hexagon socket head cap screws with 3.3 top diameter, or JISB1101 type M2 round head screws. 7.2 4-M2 x 0.4 thread depth 3 Attachment mounting thread 0 -0.05 4 Weight: 25g Specifications and dimensions other than the above are the same as the basic type. 7 Parallel Type
Vacuum ejector series ZA is compact and lightweight, making it ideal for pick and place operations, and suitable to all industries. Due to the compact design of the ZA, it is possible to install on moving parts. The shortened tube length to pad improves response time. The ZA is available as a single unit or manifold type, with or without pressure sensors and suction filters. Compact
Vacuum ejector series ZA is compact and lightweight, making it ideal for pick and place operations, and suitable to all industries. Due to the compact design of the ZA, it is possible to install on moving parts. The shortened tube length to pad improves response time. The ZA is available as a single unit or manifold type, with or without pressure sensors and suction filters. Compact
Vacuum ejector series ZA is compact and lightweight, making it ideal for pick and place operations, and suitable to all industries. Due to the compact design of the ZA, it is possible to install on moving parts. The shortened tube length to pad improves response time. The ZA is available as a single unit or manifold type, with or without pressure sensors and suction filters. Compact