The kinetic energy of a load can be found using the following formula. 20 10 5 M 100 300 1000 2000 500 M 2 2 Ek = Maximum drive speed (mm/s) Ek: Kinetic energy (J) M: Weight of load (kg) : Piston speed (m/s) Example) Find the rod end load limit when a 63 air cylinder is operated at a maximum drive speed of 500mm/s.
Applicable model HRR010/012/018/024/030/050-mm-m-DM Measurement range of electric conductivity 0.1 to 48.0 S/cm Set range of target electric conductivity 0.5 to 45.0 S/cm1 Set range of electric conductivity hysteresis 0.1 to 10.0 S/cm 1 Default setting is set to Electric conductivity set value: 25.0 S/cm and Hysteresis: 5.0 S/cm.
660 320 500 660 500 660 500 660 500 660 500 660 7.9 0.33 3.0 1 4 (8A) 15 0.61 4.5 4.5 15 0.61 3.0 1 4 (8A) 6 1.1 6 26 26 1.1 3 1.6 8 38 7.9 0.33 1.0 3 8 (10) 4.5 1.9 10 46 15 0.61 6 0.33 3 7.9 26 1.1 Note) Weight of grommet type.
0.43 0.73 0.63 0.73 0.2 JSX21-S Cm503 320 360 7.1 3.15 0.44 0.88 0.76 0.88 0.1 JSX21-S Cm703 320 360 3/8 1/4 4.0 2.02 0.48 0.52 0.45 0.52 1.0 JSX31-S Cm402 450 490 5.6 2.62 0.43 0.73 0.63 0.73 0.5 JSX31-S Cm502 450 490 7.1 3.15 0.44 0.88 0.76 0.88 0.2 JSX31-S Cm702 450 490 30 3/8 4.0 2.02 0.48 0.52 0.45 0.52 1.0 JSX31-S Cm403 450 520 5.6 2.62 0.43 0.73 0.63 0.73 0.5 JSX31-S Cm503 450 520
40 200 100 RJ2725L Impact mass m [kg] 80 Impact mass m [kg] Impact mass m [kg] 30 150 RJ2015L RJ1412L 60 RJ2725H 20 100 RJ2015H RJ1412H 40 10 50 20 RJ1410 0 0 0 0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 Collision speed [mm/s] Collision speed [mm/s] Collision speed [mm/s] Type of Impact Impact of air cylinder actuation (Downward) Check Model Selection Step z to c prior
CY1H25 (Nm) 64 56 50 40 30 50 40 M1 1.5 10 13 M2 2.5 16 16 M3 1.5 10 13 M1 28 56 64 M2 26 85 96 M3 28 56 64 Model CY1H25 CY1HT25 CY1HT32 Model CY1H10 CY1H15 CY1H20 30 28 26 20 20 CY1H20 CY1H15 16 13 Moment Nm Moment Nm 10 10 2 2.5 3 4 5 3 4 5 CY1H10 M3 2 CY1H10 1.5 1 1 0.5 0.5 70 100 300 500 100 300 500 1000 1000 70 M1 M2 Piston speed mm/s Piston speed mm/s Graph (3) Graph (2) Moment generated
J 500 General purpose cylinder 50 mm/s 100 3000 mm/s 1000 mm/s 2000 mm/s D500 mm/s 400 Cushion chamber Relief valve Relief valve body -X 4. Finish cushioning Stroke [mm] 300 Transfer equipment 400 N, 1000 mm/s (For 32) Transferring to the opposite stroke, air passes through the cushion seal that functions as a check valve, and starts to push the piston. 2050 200 Data 100 50 mm/s 5.
1000 1500 0.1 100 200 300 400 500 1000 1500 100 200 300 400 500 1000 1500 100 200 300 400 500 1000 1500 Piston speed (mm/s) Piston speed (mm/s) Piston speed (mm/s) Piston speed (mm/s) ML2B/M1 (Pitch moment) ML2B/M2 (Roll moment) ML2B/M3 (Yaw moment) 30 40 20 20 5 4 3 10 10 5 4 3 ML2B40 ML2B40 2 5 4 3 Moment (Nm) Moment (Nm) Moment (Nm) 2 ML2B32 ML2B32 1 ML2B40 ML2B40 ML2B40 ML2B40 2 1 ML2B25
Maximum acceleration: 2000mm/s Positioning time (sec.) Positioning distance (mm) 1000 500 100 10 1 10 100.4 50.4 10.4 1.4 0.5 100 10.4 5.4 1.4 0.5 0.4 Speed (mm/s) 150 7.1 3.8 1.1 0.5 0.4 300 3.8 2.2 0.8 0.5 0.4 Values will vary slightly depending on the operating conditions.
Since the stroke reading cylinder outputs one pulse for each 0.1 mm of movement, 5,000 pulses will be output for each 500 mm of movement. Therefore, a speed of 500 mm/s is equivalent to 5 kcps (kHz), but a counting speed 2 to 3 times greater is recommended for actual operation. ML2B Movement 0.2 0.1 0.3 C J G5-S A phase CV B phase Signal (2) MVGQ 1.
Since the stroke reading cylinder outputs one pulse for each 0.1 mm of movement, 5,000 pulses will be output for each 500 mm of movement. Therefore, a speed of 500 mm/s is equivalent to 5 kcps (kHz), but a counting speed 2 to 3 times greater is recommended for actual operation. ML2B Movement 0.2 0.1 0.3 C J G5-S A phase CV B phase Signal (2) MVGQ 1.
AS 0 0.1 0.15 0.2 0.25 0.3 Return stroke pressure (MPa) ASP ASN v v w w a a o o l l v v l l F F e e AQ ASV u u r r e e s s v v s s a a e e l l v v r r P P e e AK ASS ASR ASF Working stroke Working stroke Return stroke Return stroke Pressure valve Flow valve 15-16-1 2 Cuts air consumption by operating the return stroke at a reduced pressure.
0.2 0.2 0.5 ML2B25 ML2B25 ML2B25 ML2B25 ML2B25 ML2B25 0.1 0.1 0.1 100 200 300 400 500 1000 1500 100 200 300400500 10001500 100 200 300400500 10001500 RS Q G YES Piston speed (mm/s) Piston speed (mm/s) Piston speed (mm/s) Piston speed (mm/s) YES This system cannot be used because its learning function will not operate properly and the stopping accuracy will be worsen.
0.2 0.2 0.5 ML2B25 ML2B25 ML2B25 ML2B25 ML2B25 ML2B25 0.1 0.1 0.1 100 200 300 400 500 1000 1500 100 200 300400500 10001500 100 200 300400500 10001500 RS Q G YES Piston speed (mm/s) Piston speed (mm/s) Piston speed (mm/s) Piston speed (mm/s) YES This system cannot be used because its learning function will not operate properly and the stopping accuracy will be worsen.
AL SMC SMC SMC SMC SMC SMC 0.1 0.3 0.2 0.4 0.5 0.6 IS1000 MPa SMC SMC SMC K K K P P P C C C U U U O O O SMC SMC SMC SMC S S S L L L H H H MADE IN JAPAN K K K P P P C C C U U U O O O S S S L L L H H H Mixed manifold Mixed manifold Front handle/Bottom ported Front handle/Top ported Common exhaust type and individual exhaust type can be mounted on the same manifold base.
Bore size Series CM Pressure 0.5 MPa Load factor 50% Stroke 300 mm Series MB Pressure 0.5 MPa Load factor 50% Stroke 500 mm Series CS1 Pressure 0.5 MPa Load factor 50% Cylinder stroke 1000 mm Average speed (mm/s) System 20 25 32 40 40 50 63 80 100 125 140 160 VK 800 700 600 500 400 300 200 100 Perpendicular, upward actuation Horizontal actuation VZ A VF 0 VFR 800 700 600 500 400 300 200 100
the min. operating pressure Less than 500 mm/s 100 mm/s or more y Follow-up speed Less than 100 mm/s Low adhesion Required w Required w Low adhesion Required w Low adhesion Not required (Except CJ2X and CUX10) Not required Not required q q qr 1 Consider using the smooth cylinder. 2 Consider using the low speed cylinder (new model). 3 Consider using the low speed cylinder (conventional model
Formula (2) Effective inside diameter of piping V: Fluid flow velocity (m/s) Q: Fluid volume (l/min) din: Effective inside diameter of piping (mm) Fluid flow velocity Formula (3) din x 10__ 4 V = Q 1 ___ 60 Rubber hose 5m/s Steel piping 4.5m/s 600 General range of rubber hose (max. 5m/s) Cylinder bore size 160 500 General range of steel pipe (max. 4.5m/s) 400 11/2"(38.1) rubber hose Cylinder